6 resultados para thrombolysis time window

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

objective: This in vitro study aimed to analyse the protective effect of differently concentrated titanium (TiF4), zirconium (ZrF4) and hafnium (HfF4) tetrafluoride on enamel erosion. Methods: Polished enamel surfaces of 36 bovine crowns were covered with tape leaving 4 enamel windows each 3 mm in diameter exposed. The crowns were randomly assigned to six groups (each n = 6) and pretreated with 4% TiF4, 10% TiF4, 4% ZrF4, 10% ZrF4, 4% HfF4 or 10% HfF4 for 4 min (first window), 10 min (second window) or 15 min (third window). The fourth window of each crown was not pretreated and served as control. Erosion was performed stepwise with 1% HCl (pH 2) in five consecutive intervals of each 15 s (total 75 s). Enamel dissolution was quantified by colorimetric determination of phosphate release into the acid. For each tooth, cumulative phosphate loss of enamel pretreated with one of the tetrafluoride compounds was calculated as percentage of the respective control and statistically analysed using two-way ANOVA.Results: Enamel erosion was significantly reduced by TiF4, ZrF4 and HfF4 application. Cumulative phosphate loss (mean % of control, 75 s erosion) after 4-15 min application was significantly lower for 4% ZrF4 (7-11%), 10% ZrF4 (2-6%), 4% HfF4 (11-9%) and 10% HfF4 (12-16%) compared to 4% TiF4 (42-27%) and 10% TiF4 (54-33%). Only for 4% and 10% TiF4, phosphate loss decreased with increasing duration of application, but also increased with increasing acid intervals.Conclusion: TiF4, ZrF4 and HfF4 might protect enamel against short-time erosion, but protection was more enhanced by ZrF4 and HfF4 compared to TiF4 application overtime. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tensor3D is a geometric modeling program with the capacity to simulate and visualize in real-time the deformation, specified through a tensor matrix and applied to triangulated models representing geological bodies. 3D visualization allows the study of deformational processes that are traditionally conducted in 2D, such as simple and pure shears. Besides geometric objects that are immediately available in the program window, the program can read other models from disk, thus being able to import objects created with different open-source or proprietary programs. A strain ellipsoid and a bounding box are simultaneously shown and instantly deformed with the main object. The principal axes of strain are visualized as well to provide graphical information about the orientation of the tensor's normal components. The deformed models can also be saved, retrieved later and deformed again, in order to study different steps of progressive strain, or to make this data available to other programs. The shape of stress ellipsoids and the corresponding Mohr circles defined by any stress tensor can also be represented. The application was written using the Visualization ToolKit, a powerful scientific visualization library in the public domain. This development choice, allied to the use of the Tcl/Tk programming language, which is independent on the host computational platform, makes the program a useful tool for the study of geometric deformations directly in three dimensions in teaching as well as research activities. (C) 2007 Elsevier Ltd. All rights reserved.